464 research outputs found

    Impact of Gene-Gender Effects of Adrenergic Polymorphisms on Hypothalamic-Pituitary-Adrenal Axis Activity in Depressed Patients

    Get PDF
    Objective: There is overwhelming evidence that activation of the hypothalamic-pituitary-adrenal (HPA) system plays a major role in depression and cardiovascular disease in genetically susceptible individuals. We hypothesized that due to the multiple interactions between the sympathetic and the HPA systems via adrenoceptors, polymorphisms in these genes could have an impact on HPA axis activity in major depression. Methods: Using the dexamethasone/corticotrophin-releasing hormone (DEX/CRH) test, we investigated the association of alpha 2-adrenoceptor (ADRA2A -1291C -> G) and the beta 2-adrenoceptor gene (ADRB2 Arg16Gly) in 189 patients with major depression during the acute state of the disease and after remission. Results: Male ADRA2A -1291G allele homozygotes showed significant pretreatment HPA axis hyperactivity, with increased adrenocorticotropin (ACTH; F = 4.9, d.f. = 2, p = 0.009) and cortisol responses (F = 6.4, d.f. = 2, p = 0.003). In contrast, female ADRB2 Arg/Arg homozygotes had increased pretreatment ACTH (F = 7.17, d.f. = 2, p = 0.001) and cortisol (F = 8.95, d.f. = 2, p = 0.000) levels. Interestingly, in the respective genotypes, the stress hormones remained elevated in the second DEX/CRH test, despite a reduction in depressive symptoms. Conclusions: This study provides evidence that, depending on gender and polymorphisms, there is continuous HPA axis overdrive in a proportion of patients irrespective of the status of depression. Considering the importance of stress hormones for cardiovascular disorders, our data might suggest that these patients are at high risk of comorbidity between depression and cardiovascular disorders. Copyright (c) 2008 S. Karger AG, Base

    Cloning and characterization of a fourth human somatostatin receptor.

    Full text link

    Neuroactive steroids in depression and anxiety disorders: Clinical studies

    Get PDF
    Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3 alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3 alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3 alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3 alpha,5 alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds. Copyright (c) 2006 S. Karger AG, Basel

    Saccadic eye velocity after selective GABAergic treatment with tiagabine in healthy volunteers

    Get PDF
    Background: Saccadic eye velocity (SEV) has been shown to be a reliable neurophysiological tool for the assessment of gamma-aminobutyric acid GABA(A) receptor sensitivity. Administration of benzodiazepines targeting the GABA(A) receptor decreases SEV in healthy volunteers. Tiagabine is a new antiepileptic drug which acts via selective blockade of GABA reuptake. Therefore, we examined the effects of tiagabine on saccade parameters. Methods: SEV was analyzed in 8 healthy volunteers before and after 7 days of tiagabine treatment. Subjects received tiagabine in a daily dose of 15 mg. Saccades were measured using a noninvasive infrared oculographic device. Amplitude, latency, and SEV were analyzed as a function of treatment and target eccentricity. Results: SEV and saccade latency increased with target amplitude. Treatment with tiagabine had no significant effect on SEV and saccade amplitude. A trend was found for increased latencies after tiagabine. Conclusion: In contrast to findings with benzodiazepines, tiagabine treatment had no impact on SEV in healthy volunteers. The subchronic tolerance effects or the different site of action on the GABA(A)/BZD receptor complex may account for this deviating profile. Copyright (C) 2005 S. Karger AG, Basel

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data

    Get PDF
    Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP’s Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics

    Preparing n-of-1 antisense oligonucleotide treatments for rare neurological diseases in Europe: genetic, regulatory, and ethical perspectives

    Get PDF
    Antisense oligonucleotide (ASO) therapies present a promising disease-modifying treatment approach for rare neurological diseases (RNDs). However, the current focus is on "more common" RNDs, leaving a large share of RND patients still without prospect of disease-modifying treatments. In response to this gap, n-of-1 ASO treatment approaches are targeting ultrarare or even private variants. While highly attractive, this emerging, academia-driven field of ultimately individualized precision medicine is in need of systematic guidance and standards, which will allow global scaling of this approach. We provide here genetic, regulatory, and ethical perspectives for preparing n-of-1 ASO treatments and research programs, with a specific focus on the European context. By example of splice modulating ASOs, we outline genetic criteria for variant prioritization, chart the regulatory field of n-of-1 ASO treatment development in Europe, and propose an ethically informed classification for n-of-1 ASO treatment strategies and level of outcome assessments. To accommodate the ethical requirements of both individual patient benefit and knowledge gain, we propose a stronger integration of patient care and clinical research when developing novel n-of-1 ASO treatments: each single trial of therapy should inherently be driven to generate generalizable knowledge, be registered in a ASO treatment registry, and include assessment of generic outcomes, which allow aggregated analysis across n-of-1 trials of therapy.Genetics of disease, diagnosis and treatmen
    • …
    corecore